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Abstract. We provide analytical and non-perturbative expressions for the effective coupling
constant of QED in the presence of slowly varying background fields. Qur results agree
with previous numerical calculations but, for strong magnetic fields, we observe some
deviations from the expected logarithmic increase of the fine structure constant. These
effects tend to reduce the effective charge, thereby providing further evidence against the
existence of a new, strong-coupling phase of QED in heavy-ion collisions.

Introduction

The fine structure constant can be regarded as an effective coupling constant «.q which
receives corrections in the presence of external electromagnetic fields [1]. By properly
choosing the background field configuration and strength one can hope to shift the
value of a.z up to the strong coupling regime oz~ 1, where QED is supposed to have
a new confining phase [2]. The existence of such a phase in heavy-ion collisions has
been postulated [3, 4] in order to explain the narrow ee” peaks observed at Gsi by
the Epos and ORANGE collaborations [5, 6].

The ‘proper time’ formalism of Schwinger [7] has been used in [1] to estimate .4
as a function of constant background fields. The numerical results show that the
effective charge increases but the growth is only logarithmic and it is not enough to
irigger the posiulaied phase tramsition.

The aim of this paper is to provide analytical expressions for the a.; dependence
on the external field strength and direction. Qur results will confirm the numerical
analysis of [ 1] but, for strong magnetic fields, we find some deviations from the expected
logarithmic growth. Such effects conspire to make a.s smaller, so that it is even more
difficult to reach the critical point ¢z~ 1.

2. An effective Lagrangian for Qen in the presence of background fields

In this section we describe in some detail the method used to evaluate the effective
fine structure constant as a function of constant background fields, We start from the
generating functional for QED:

wI[J] =J DA, exp{i J d‘x[SfA+J#A”]}
xj Df Dy exp{i J' d*x[ %+ el,E'de;A*‘]} (1)
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where £, and %, are the free field Lagrangians for photons and fermions respectively.
Formally, one can integrate over the fermion variables to obtain a generating functional
for the photon field only:

W{.\;[J] = J DA, ,exp{i J d*x[Ls+ &L+ JuAM]} @)

exp [i J d'x ¥ '} =j 25 B¢ cxpli[ £x(%+ eJL‘M#]}. (3)

| @d 2 expfi § d*x £}

The electromagnetic field can now be regarded as a closed system governed by the
Lagrangian F=2Z,+Z" ¥ includes, in an effective way, the dynamics of the fermion
fieids. Ufapmcduy, it represenis ihe coniributions with a singie fermion icop and an
arbitrary number of external photon legs. Schwinger [7] provided an evaluation of &’
for the case of slowly varying fields F,,. In particular £’ can be given the following
integral representation:

m' [* e n a2
$'=W . dn—1;-3- —(na cot(na)nb coth(nb)+1-?(a —b%) (4)
with
a=[(F+ )+ F] (5a)
=S UF+ 42— )" (5b)

where # and ¥ are the fundamental invariants of the electromagnetic field, %=
(E*~B*)/2, 4= E- B. If the vectors E and B are mutually parallel the invariants a
and b have a simple physical meaning, namely

try

eF eR

(5¢)

a= —
mZ

3

Since we want to discuss a quantized electromagnetic field A} in the presence of
an external classical field A", we find it appropriate to write A, = A2+ A" and to
expand #' in powers of A}. The quadratic term

1 ~ COF
1 oL

2 8(9.Ag)3(3,As)

is then used as an effective interaction Lagrangian in computing the corrections to the
photon propagator. As one can easily verify, the tensor A***® has the following
symmetry properties:

L= 3.A%3,A3= A°P"5 A3 A3 (6)

AP = pBaYS BBy _ g EeR (M

In terms of this tensor the leading correction to the photon propagator is given by

8D, (x—y)= -I d*z(0| TA,(X) A, (D)AP7*[3,A5(2)1[3,45(2)]10)  (8)
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where the superscript °q’ has been omitted. From the corrected propagatorin momentum
space 2. (k) we extract the effective fine structure constant by means of the gauge
invariant definition:

ati D, (k) ;= aat D, (k)J3 (9a)

where the matrix elements of the currents J, ; are taken in their static limit J, » = (p;.2, 0)
and, consequently, k- (0, k). More conveniently, a.q can be defined as

aBoo(0, k) = a5 D0o(0, k) (9b)

which is equivalent to (9a) provided that the propagators D, (k) and 3,,(k) are
non-singular in the considered limit k- (0, k). In the following, we shall explicitly
verify that this condition is actually fulfilled if one starts from the free propagator in
a standard gauge, such as the Feynman one. Strictly speaking, our a.s cannot be
considered as a ‘true’ coupling constant, since it depends on the direction of the
exchanged momentum k. In principle, alternative definitions are possible. In particular,
following the authors of [1], a.; can be given in terms of the fundamental invariants
( #, %), providing a coupling which is automatically independent of the direction of
the applied external field. However, we find it appropriate to keep definition (9} since
the existence of preferred directions is an essential feature of the problem we are
dealing with and, in such conditions, any isotropic quantity is likely to give an
incomplete description of QED. Besides this, the isotropic fine structure constant of
f1] can easily be derived from our a4, as we shall discuss in section (4).

Before censidering some specific configurations of background fields it is useful to
give equation (8) a more compact form. First, we apply the Wick theorem to obtain

6D

[

SAx=—y)= —J' d*z{0| TA,(x)3% Aa(2)0){0| TA,(y)3% As(2)|0)A *#*

“J‘ d*2{0| TA,(x)33As (2)|0{0] TA. ()32 Ag(2) | 0}A 7. (10)

Because of the symmetry properties of A*#* the two terms of the RHs are equal, so that

8D, (x—y)=2 J d*2{9% D (x — )55 D,aly — 2)]AP7. (11)

Finally, by introducing the Fourier transforms of the free photon propagators we
obtain, in momentum space,

8D, (k) = 2D, (k)A“®"k.k,D;, (k). (12)

It is important to observe that the correction §D,,(k) is invariant under the gauge
transformation D,,,(k)~ D,,(k)+ x.k.+ x.k,. This property follows from the sym-
metry relation (7) which ensures that kgk, A®*"® = A**"k k; = 0.

o
T v,

.
e
&h

W
=

We now use equation (12) to find a.q as a function of weak background fields. We
treat this problem just for the sake of completeness, since it is not strictly connected
to the ‘new phase scenario’ proposed in [3, 4].
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For weak fields, that is for E, B« m?/e, the Lagrangian ¥’ is well approximated
[8] by the expression
2

o
F'=————[(E*’-B**+7(E- B)"].
The corresponding tensor A**™® turns out to be

2

a m o @&
15 g AE T F A FE (878 — g8

+TEP P L e FE, ] (14)

Aaﬂys =

where ﬁm is the dual of F,,,. From equations (12) and (14) we get the following result
for 8D, (k}:

(4ma)? [ F. k°F k* _ FE, Kk°F Kk’ 2o ]
8D, (k)= B XN | 14 Y +2F,,,F”"—’-‘—J.
= ( ) 45 . 8W2m4 (k2)2 (k2)2 1 kz (15}

Obviously, the term with the completely antisymmetric tensor £“#” does not contribute
to the photon propagator. The expression for 8Dye(k) is much simpler,

40’ [ (k-EY _(k-B)? 2(13%152)]
8Dy k) = + +
00(k) = 45 [4 (k)* 7 (k2)° K (16)
and it is straightforward to obtain the effective fine structure constant o g:
2
Aoq= @ [1+ 2 [2B*-7(t- B -2E*—4(t- E)‘*]] (17)
45mTm

where t is the unit vector in the direction of k. As far as weak magnetic fields are
concerned, we see that the effective coupling strongly depends on the direction ¢ of
the exchanged momentum k: a4 increases if £- B ~0 but the opposite holds when the
t~ B/ B direction is considered. The effect of a weak electric field is ¢asier to compre-
hend [1] and, as one would expect, it tends to reduce the effective fine structure constant.

4. Strong fields

Let us now consider the most interesting case of strong background fields. The
knowledge of a.4 as a function of constant electric fields provides information about
the behaviour of QED around static configurations of highly charged sources. On the
contrary, the study of a.4 in strong magnetic fields can be regarded as a first step
towards the description of QED in the neighbourhood of iarge moving charges, such
as the heavy ions colliding in a Gs1 experiment.

When the electric field is so strong that eE/m?> 1, the formalism developed in
section (2) is no longer reliable; electron-positron pairs are produced with sizeable
probability and we cannot describe the dynamics of A, by means of a real effective
Lagrangian depending on F,, only. Thus, we shall evaluate a.qs as a function of a
strong magnetic field B, whereas E will still be supposed to be weak. In a heavy-ion
collision the condition E « B is actually fulfilled in the region between the colliding
nuclei. The size L of this region depends on the impact parameter s of the collision
as well as on the 8 of the ions. A rough estimate gives L~ Bs, as one can verify by
means of very simple arguments. )
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As in the previous section, we have to start from the tensor A***®, which can be
written as

AGB),B:__[BSE" aa’ +62££' sa’  aa’

2 Loaa® 3(5.A45)8(3,45)  8(a®)* 3(9,A5) 8(3,A;)
L 3°b> +a‘*£” ab*  ab?
b 8(8,A45)3(3,45)  3(b?)” 3(3.Ag) 8(3,A5)
N 52.2”( da®  ab’ . ab’>  sa’ )]
3a’ab* \8(3,Az) 3(3,45) 9(3.4z) 33,4s5)

since the external electric field is supposed to be weak, we evaluate the derivatives of
the invariants a* and b up to the quadratic terms in E only. We obtain

(18)

aa’ E EB.
G AB)=2 [EJ}FABH 57 F* ] (19a)
6b2 aal o
= — _Fﬂf‘ b
HouAs) 3GuAs (19b)
#a?
3(0,A5)8(8,45)
a | 2
= — _".+ thﬁ &
m* [82(1 6 B) F
SEH_ FQBF'YB z_u(gas By ga—ygﬁa)
E- B
5 "”"’5] (20a)
a*b? #a’
= . 2—:(3"‘3 7 —g= g (20b)

3(0.Ap)5(3,45)  3(3.A4)3(3,A5)
where E| is the component of E parallel to B. As far as the derivatives of &' are
concerned it is useful to express the Lagrangian as

F(a,b)=SLy(b)+a Ly (b)+a*Lub)+... (21)
where %,, ¥, and ¥, are obtained by expanding the rHs of equation (4):

m* (< e[ ,b°
== — | n*=—nb b)+
s SWZJ'O dn e [n 3" coth{nb) 1] (22a)
m* [ e
$2=_2J. dn——[nb coth(nb) - 1] (22b6)
87 Jo In
m* b J'“’
=—— | dne " n*coth(nb).
+=garas ), dne Tmco (mb) (22¢)

Then, keeping in mind that a’=(a/m*)Ej+O(E"), we have

- (!

;—“;—* .%(b)+2 - E3%,(b)+ O(E*) . (23a)
3F 63’0 o A

il + 4
b2 ab? E"ab" O(E") (23b)
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and similar relations for the higher order derivatives. All the previous expressions are
greatly simplified if we set E =0. In particular, the tensor A**** takes the form

' B fy8 '
A,,W__[(gg; a.@) FPED 38" o
aa’. ab? B*  ab?
a &&L ]

+2 - =S FPFT
a(bz)z

a 3%\ F*2F7" 3%,
— + _ aay  BE
m4[( 2 abz) FEERRY-L A S S
23 3230
—_ F“BF‘WS]_
2m4 a(bZ)Z

According to equation (12), the corresponding correction to the photon propagator

turns out to be o
a.seo) F,k°F k* 3%, g
k 2 4 (.EE i e Rt
( ) ( ‘”) [ 2 ab (kz)z ab? k2
a 8% Fo k"F, k" 0%y ky k]

—-27g"™)

{24a)

(24b)

2m_a(b2)2 (K ab® K

Once again the correction to the Dyy(k) compenent has a rather simple expression:

(25)

_4'rr 87 | 0%, ( B-fo) (k- B)Z:I
8D y(0, kY= o [ab2 £+ 52) 128 | (26)
From this we extract the effective coupling constant o g:
{ 8walda%, | 3Fs\ (1 B)*]
areﬁ=a{ + I_Bbzﬂ (3’2 Bbg) ——32—J . (27)

The problem is now reduced to find the asymptotic behaviour, for b o0, of 3%,/ab°
and %£,(b). Starting from equations (22a,b) it is not difficult to recognize that

2%, m 11:1 bz—ﬁjln(“BZ\

(28)

“12 @
a0 [+]

b1 m4[e3 1 (aB’)]
[N S Wy C) LY LAY B il 29
2~ 811'2(3 6lnb) 873 13m 6"\ (29)

Later on we shall need the asymptotic behaviour of ¥, as well. The integral appearing
in equation (22¢) can be evaluated analytically and it gives

Dm - 1 . -
“Ty? —}- 30
JO dne coth{nb) = 2[4!)3 g(3,2b) IJ (30)
where {(n, x) is the generalized Riemann zeta function. From this result one easily
obtains

2 m*
45 87 872
Inserting the relations (28) and (29) in equation (27) we get
B? B (¢ BY
a,ﬂ~a[1+—a—ln(2m—4) o8 (—-—)—] (32)

6 irm* B

Z£4(b)~ b. (31)
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This formula looks very strange since it predicts a negative a.z when ¢t- B0 and
B> (3m/a)(m®/e). The origin of this drawback is easily recognized: equation (32)
has been obtained from the first-order cortection (12) which is not enough to account
for the big corrections induced by strong external fields. In order to obtain meaningful
expressions we have then to evaluate the photon propagator to all orders in %£,4. This
‘exact’ propagator & can be cast into the form

@=D+DVD+DVDVD+...=D[D-DVD]'D=D[D-8D]"'D (33)

where V is the external field vertex operator V* =2k, k, A“*"*. If we work in the
Feynman gauge D,, =4wg,./k” and we set k=0, the matrix D — 8D has the simple
block structure

|'E| . ‘I

-~ f3AY
DnéD—-l J 34)

as one can easily verify with the aid of equation (25). This result enables us to write

D
Do = D[ D — 8D]5) Dgp = ——— 35
00=Dool 33 Do =15 (35)
which, in turn, yields
o
acﬂ'—l_aa (36)

where 8a stands for the first-order correction to the effective fine structure constant.
The use of the Feynman gauge has slightly simplified the calculations but the final
result for a.z does not depend on that choice. To see this, it suffices to recall that
VP k, =k, VP* =0 (see comments on equation (12)). Thus, if we add a gauge term
G,. = x.k,+x.k, to D,., the corrected propagator given by equation (33) will change
in the same manner, that is

D> D+ x.k T+ XK, 3N
with no effect on equations (9).

Having established relation (36) we can now replace equation (32) with the
improved one:

o «BY\ a eB (¢t B)z)
- Y e P .
e a/(l 6 "( m“) irm B (38)

As in the case of weak magnetic fields, we observe an increase of a.q in the - B=0
plane. However, the growth is too small to corroborate the hypothesis according to
which the critical point @z~ 1 is approached in a heavy-ion collision, In fact, the
strength of the magnetic field produced between the colliding nuclei is of the order
B°"~ 10° MeV?, corresponding to a relative correction (@ — a)/ e ~0.005 only. Fur-
thermore, as soon as we move away from the ¢+ B = 0-plane, the leading effect of the
applied field is to reduce the coupling, since the logarithmic growth is dominated by
the linear term

o eB (e By
3z m* B
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In this regard, it is easy to understand why such an effect was not reported in [1]. In
this reference the effective fine structure constant was defined as

e {a\T o | a , -t
T (697) T arn [a? (ZatL )] ‘ (39)
Since £, = F/47 we can write
3! 0™
&=a|:l+417‘a?j| =a[l—81'r—’s';wj| . (40)

That is, @ is nothing but the value taken by our s at ¢- B=0. Thus, its asymptotic
behaviour is given by

&~a /[1-—m(“B V] (41)

6 \m"/]

without terms proportional to B in the denominator.

The foregoing results, in particular equation (38), require minor emendations when
a weak electric field is superimposed on B. In this case it is useful to split the tensor
AP (E, B) as follows:

A°P°(E, B) = A""*(B)+ A*P"® (42)

afiys afys

where A“F*(B) is given by equation (24) and A accounts for the corrections
introduced by the external electric field. Correspondingly, the first-order correction to
the photon propagator is wriiten as

8D, (E,B)=5D,, (B)+8W,, (43)
where 3D,.(B) is given by equation (25) and
W, (k)=2D,4(k)A“P"*k Kk D;, (k) (44)

as dictated by equation (12). Then, according to equation (33), the ‘exact’ propagator
9(E, B) takes the form

9(E,B)=D[{D-8D(B)- W] 'D~%(B)[1+ D 'sWD'9(B)] (45)
Z(B) being the exact propagator in the absence of background electric fields. From
this equation we obtain the following relation for a.sz(E, B):

acﬂ(B)] (46)

a.q(E, B) = a.q( B} [1 + D(;olswoo
with a.s(B) given by equation (38). The correction §Wy, can be evaluated with the
aid of equations (19) and (20). Since in this case the tensor A*?”® takes a rather messy
form we just state the final result, omitting the intermediate steps. It turns out that
a.«(E, B) can be cast into the form

4 eB t- B) a.u(B)
aeﬁ(E,B)—-am(B)[l—E;g—z% ) 2l ] (47)

The logarithmic growth in the t- B =0 plane is then unaffected but, for - B# 0, the
presence of a weak electric field gives a further contribution to the decrease of the
effective coupling constant.
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5. Summary

In this work we have discussed the photon propagator in the presence of slowly varying
external fields. Analytical and non-perturbative results have been obtained by including
the fermionic dynamics in an effective Lagrangian depending on the photon field only.
From the @, component of the corrected propagator we have extracted an effective
fine structure constant ez as a function of the external field configuration.

The behaviour of a.s in the presence of strong fields has interesting implications
for the e*e” peaks observed in heavy-ion scattering experiments at Gsi {5, 6]. More
precisely, it is important to ascertain whether the unusual field environment induced
by the heavy ions can shift a.z up to the strong coupling regime a4~ 1, where QED
is supposed to have a new confining phase; as suggested by many authors [3, 4], the
presence of this new phase would actually explain the gross features of the observed
€ e narrow structures. In this regard, the main motivation for our work has been to
reproduce analytically the numerical results of [1] which show that the increase of a.g
is too small to trigger the postulated phase transition.

From the formalism developed in sections (2) and (4) we have derived a simple
expression describing the behaviour of a.g in the presence of a strong magnetic field

B. In the plane perpendicular to B the effective coupling shows a logarithmic growth
whirh agraac with the nmumarical 6tra|nahnn nr r1-| l:'nr a fiald cfrnnnfh R — 1n3 Mav?

TAIIWIL GRIW TRILAL LILW MAUSLANGEIWERL W ¥ @ LIV Sllwl AV IVAW Y

comparable with that produced in a heavy-ion colllsmn, we have estlmated a negligible
shift of the effective coupling constant, namely a.z— @/ a ~ 0.005. This small correction
clearly militates against the new phase hypothesis.

Sizeable deviations from the expected logarithmic increase have been found for
directions with a non-vanishing projection on B. In particular, the dominant effect of
the applied field is to reduce the effective charge, thereby providing further evidence
against the existence of a strong coupling phase of QED in heavy-ion collisions. Anyway,
one has to keep in mind that our formalism applied to slowly varying fields only. As
a consequence, we cannot rigorously rule out the possibility that a phase transition is
triggered by more realistic configurations of external fields. A lattice calculation [9]
shows that this is unlikely to occur for the Coulomb case, but the role played by
time-dependent fields is still an open question. Moreover, further investigations are
required if the Lagrangian for QED is modified from the beginning via an additional
fermion-fermion contact interaction, which may be relevant to the strong coupling
phase of QED. A similar question has been addressed in [10], suggesting that the new
interaction term can greatly affect the behaviour of QED in strong background fields.
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