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Abstract. We provide analytical and non-perturbalive expressions far the effective coupling 
constant of QED in the presence of slowly varying background fields. Our results agree 
with previous numerical calculations but, for strong magnetic fields, we observe some 
deviations from the expected logarithmic increase of the fine structure constant. These 
effects tend to reduce the effective charge, thereby providing further evidence against the 
existence of a new, strong-coupling phase of QED in heavy-ion collisions. 

Introduction 

The fine structure constant can be regarded as an effective coupling constant ac* which 
receives corrections in the presence of external electromagnetic fields [ 11. By properly 
choosing the background field configuration and strength one can hope to shift the 
value of a., up to the strong coupling regime a., - 1, where QED is supposed to have 
a new confining phase [2]. The existence of such a phase in heavy-ion collisions has 
been postulated [3,4] in order to explain the narrow e+e- peaks observed at GSI by 
the EPOS and ORANGE collaborations [5,6]. 

The ‘proper time’ formalism of Schwinger [7] has been used in [ l ]  to estimate a., 
as a function of constant background fields. The numerical results show that the 
effective charge increases but the growth is only logarithmic and it is not enough to 
rngger m e  posruiarcu priabc L ~ ~ I L ~ I U I I .  

The aim of this paper is to provide analytical expressions for the a.* dependence 
on the external field strength and direction. Our results will confirm the numerical 
analysis of [ 11 but, for strong magnetic fields, we find some deviations from the expected 
logarithmic growth. Such effects conspire to make a., smaller, so that it is even more 
difficult to reach the critical point a., - 1. 

_..-~.-&L. I...> _ I _ ^ _ _ I  ---- :.:-- 

2. An effective Lagrangian for QED in the presence of background fields 

In this section we describe in some detail the method used to evaluate the effective 
fine structure constant as a function of constant background fields. We start from the 
generating functional for QED: 

(1 )  
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where XA and 2/ are the free field Lagrangians for photons and fermions respectively. 
F ~ ~ a l l y ,  one can integrate over the fermion variables to obtain a generating functional 
for the photon field only: 

d 4 ~ [ 2 A + Y + J , A a ]  ( 2 )  

with 

9$9$ exp{i d4x[3/+ e$y&AP]} 
9 $ 9 $ e x p { i j d 4 ~ 2 f ]  

exp [ i d4x 2'1 = (3 )  

The electromagnetic field can now be regarded as a closed system governed by the 
Lagrangian 2 = SA + 2'. 3' includes, in an effective way, the dynamics of the fermion 
fieiiis. Grapphicaiiy, it represents the contributions with a singie fermion ioop and an 
arbitrary number of external photon legs. Schwinger [7] provided an evaluation of 2' 
for the case of slowly varying fields F,.. In particular 2' can be given the following 
integral representation: 

with 

where 9 and 9 are the fundamental invariants of the electromagnetic field, %= 
( E 2 - B 2 ) / 2 ,  % = E .  B. If the vectors E and B are mutually parallel the invariants a 
and b have a simple physical meaning, namely 

Since we want to discuss a quantized electromagnetic field A9, in the presence of 
an external classical field A Y ,  we find it appropriate to write A,. = A9, + AY' and to 
expand 3' in powers of A;. The quadratic term 

is then used as an effective interaction Lagrangian in computing the corrections to the 
photon propagator. As one can easily verify, the tensor A*ey8 has the following 
symmetry properties: 

-- 
(7) A 6  = - A$& = -AVO7 = AII-6 

In terms of this tensor the leading correction to the photon propagator is given by 

SD,,(X-y)=- d4~(01TA,(x)A~(Y)A"E~[J,A~(~)l[J,Aa(z)IIo) (8) I 
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where the superscript ‘9’ has been omitted. From the corrected propagator in momentum 
space 9,”(k)  we extract the effective fine structure constant by means of the gauge 
invariant definition: 

aJY9, , (k)J;  = a.&D,,(k)J; (9a) 

where the matrix elements of the currents Jlz are taken in their static limit J1.*+ ( P ~ . ~ ,  0) 
and, consequently, k + (0, k). More conveniently, (1.. can be defined as 

(96) 
which is equivalent to ( 9 0 )  provided that the propagators D,,(k) and 9 , ” ( k )  are 
non-singular in the considered limit IC+ (0, k). In the following, we shall explicitly 
verify that this condition is actually fulfilled if one starts from the free propagator in 
a standard gauge, such as the Feynman one. Strictly speaking, our a.,, cannot be 
considered as a ‘true’ coupling constant, since it depends on the direction of the 
exchanged momentum k In principle, altemative definitions are possible. In particular, 
following the authors of [ l ] ,  a.,, can be given in terms of the fundamental invariants 
(9, %), providing a coupling which is automatically independent of the direction of 
the applied external field. However, we find it appropriate to keep definition (9) since 
the existence of preferred directions is an essential feature of the problem we are 
dealing with and, in such conditions, any isotropic quantity is iikeiy to give an 
incomplete description of QED. Besides this, the isotropic fine structure constant of 
[ l ]  can easily be derived from our me,,, as we shall discuss in section (4). 

Before considering some specific configurations of background fields it is useful to 
give equation ( 8 )  a more compact form. First, we apply the Wick theorem to obtain 

SD, , (x -y )=-  d 4 r ( 0 ~ T A , ( ~ ) J ~ A p ( ~ ) ~ O ~ ~ O ~ T A . ( y ) J ~ A s ( ~ ) ~ 0 ) A ” ~ y 6  

a9cm(O, k) e ~etfDw(0,  k )  

I 
- I d4z(0~TAIL(x)J~A~(z)~O)(O/TA,(y)J~Ag(z)~O)A~g18. (10) 

Because of the symmetry properties of A””’ the two terms of the RHS are equal, so that 

SD,,(x - y )  = 2  d‘z[J:D,,p(x - z)][J;D,s(y  - z ) ]A””~ .  ( 1 1 )  J 
Finally, by introducing the Fourier transforms of the free photon propagators we 
obtain, in momentum space, 

(12) 

It is important to observe that the correction SD,.(k) is invariant under the gauge 
transformation D,.”(k)+ D,,(k) +,y,k, +,y.k,. This property follows from the sym- 
metry relation (7) which ensures that kekmAmol” = AmB*kk8 = 0. 

6D,,(k) = 2D,, (k)A”’* k&DsV( k ) .  

I W.-b Ris1.l. 
d. 1.=.1n. “=.“I 

We now use equation (12) to find aeR as a function of weak background fields. We 
treat this problem just for the sake of completeness, since it is not strictly connected 
to the ‘new phase scenario’ proposed in [3,4]. 
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For weak fields, that is for E, B<< m2/e ,  the Lagrangian P' is well approximated 
[8] by the expression 

a' 
4 5 . 8 ~  m p= [ ( E 2  - B2)'+7(E.  B)']. (13) 

The corresponding tensor Amp'' turns out to be 

[4FY6F"p + F'"F ( ' 7  pa - a2 

45. 8m2m4 Im g g g"*gP') i \=P16 = 

(14) 
where 4- is the dual of 4,. From equations (12 )  and (14)  we get the following result 
for SDJk):  

+ 7P"P-O + f E ~ P @ ~ ~ m F  I", ] 

Obviously, the term with the completely antisymmetric tensor 
to the photon propagator. The expression for SDoo(k) is much simpler, 

does not contribute 

1 ( k . E ) '  ( k . 8 ) '  2 ( B 2 - E 2 )  
k2 SO,,( k )  = * [ 4 ( k 2 ) 2 + 7  ~ 45m4 ( k 2 ) 2  + 

and it is straightforward to obtain the effective fine structure constant ace: 

1 a2 
[2B2  -7(t. 8)'- 2E2 - 4(t E ) 2 ]  

where t is the unit vector in the direction of k. As far as weak magnetic fields are 
concerned, we see that the effective coupling strongly depends on the direction f of 
the exchanged momentum k: acff increases if t' E-0 but the opposite holds when the 
f- B J B  direction is considered. The effect of a weak electric field is easier to compre- 
hend [ 11 and, as one would expect, it tends to reduce the effective fine structure constant. 

4. Strong fields 

Let us now consider the most interesting case of strong background fields. The 
knowledge of (Ien as a function of constant electric fields provides information about 
the behaviour of QED around static configurations of highly charged sources. On the 
contrary, the study of aee in strong magnetic fields can be regarded as a first step 
towards the description of QED in the neighbourhood of iarge moving charges, such 
as the heavy ions colliding in a GSI experiment. 

When the electric field is so strong that eE/mZ>>l, the formalism developed in 
section ( 2 )  is no longer reliable; electron-positron pairs are produced with sizeable 
probability and we cannot describe the dynamics of A,, by means of a real effective 
Lagrangian depending on F,,. only. Thus, we shall evaluate acn as a function of a 
strong magnetic field B, whereas E will still be supposed to be weak. In a heavy-ion 
collision the condition E << B is actually fulfilled in the region between the colliding 
nuclei. The size L of this region depends on the impact parameter s of the collision 
as well as on the fl  of the ions. A rough estimate gives L-fls ,  as one can verify by 
means of very simple arguments. 
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As in the previous section, we have to start from the tensor 

3001 

which can be 
written as 

since the external electric field is supposed to be weak, we evaluate the derivatives of 
the invariants a2 and b2 up to the quadratic terms in E only. We obtain 

where Ell is the component of E parallel to B. As far as the derivatives of Y are 
concerned it is useful to express the Lagrangian as 

Y ( a ,  b )  = z,,(b) + n 2 z 2 ( b ) +  a4Z4(b)+.  . . (21) 
where Z,,, z2 and z4 are obtained by expanding the RHS of equation (4): 

2 --L\omdve-nv2coth(vb).  m4 
4-8n2 45 

Then, keeping in mind that a2=(a /m4)E;+O(E4) ,  we have 

z 2 ( b ) + 2  4 E$Z4(b)+ O w 4 )  (23a)  
J T  
aa2 m 
-= 
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and similar relations for the higher order derivatives. All the previous expressions are 
greatly simplified if we set E = 0. In particular, the tensor Aasys takes the form 

(gsYg"s -g"'ges) A m & 8 = u [ (  a y  JT ) PP JY 
m4 -+i Ja'. Jb E' ab' 

I W a )  
a J*Z' 

m4 J(b')' 
+ 2 - __ ~ " 0 ~ 7 6  

azo PP J Z ~  x2+- (gS~g=s - g = 7 g P 6 )  =$[( ab') E' Jb' 

(246) 

According to equation (12).  the corresponding correction to the photon propagator 
turns out to be 

8DPv(k)=2:(4w)' m 

a J ~ Z ~  
m J(b2)' 

+ 2 a - ~ m s ~ y 6  

a a 2 0  Fm,k"py',,k' JZn g,, +-- 
Jb2 k' [ - i' (22+s) ( k 2 ) 2  

(25) 
a J2% F.,k"F,,k' +2-- 

m4 J(b')' (k')' 

Once again the correction to the D,(k)  component has a rather simple expression: 
4 r 8 w a  azo azo ( k . 8 ) '  

6D,(O,k)=-- ,  -+ Zz+- - 
kZ m [Jb' ( Jb') kzB2 1. 

From this we extract the effective coupling constant aeE: 

The problem is now reduced to find the asymptotic behaviour, for b-tm, of J20/JbZ 
and 9 2 ( b ) .  Starting from equations (22a,b) it is not difficult to recognize that 

Later on we shall need the asymptotic behaviour of Z4 as well. The integral appearing 
in equation (22c) can be evaluated analytically and it gives 

d 7  e-"v2coth(7b)=2 

where [( n, x)  is the generalized Riemann zeta function. From this result one easily 
obtains 

2 m4 
45 8 r 2  b. 

& ( b ) - - -  

Inserting the relations (28 )  and (29) in equation (27) we get 

[ 6*, (;E2) a eB ( f . B ) ' ]  
acf f -a  I+-In 7 - -T-  

3 w m  E' ' 
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This formula looks very strange since it predicts a negative a.,, when t .  B # 0 and 
B > > ( 3 n / a ) ( m z / e ) .  The origin of this drawback is easily recognized: equation (32) 
has been obtained from the first-order correction (12) which is not enough to account 
for the big corrections induced by strong external fields. In order to obtain meaningful 
expressions we have then to evaluate the photon propagator to all orders in Se,,. This 
'exact' propagator 9 can be cast into the form 

9 = D + D V D  + DVDVD+. . . = D [ D - D V D ] - ' D  = D [ D -  SD]-'D ( 3 3 )  
where V is the external field vertex operator V86=2k,&A"816. If we work in the 
Feynman gauge D,. = 4 ~ g J  kZ and we set ko = 0, the matrix D - SD has the simple 
block structure 

(34) 

as one can easily verify with the aid of equation (25).  This result enables us to write 

which, in turn, yields 

a 
(I.,, = ~ 

1-801 

where 8a stands for the first-order correction to the effective fine structure constant. 
The use of the Feynman gauge has slightly simplified the calculations but the final 
result for aaff does not depend on that choice. To see this, it suffices to recall that 
Ve"k, =keVB"=O (see comments on equation (12)). Thus, if we add a gauge term 
G,. =x,k,+,y.k, to D,", the corrected propagator given by equation (33) will change 
in the same manner, that is 

(37) 9,- + 9," + x,k, + x.k, 
with no effect on equations (9). 

improved one: 
Having established relation (36) we can now replace equation ( 3 2 )  with the 

As in the case of weak magnetic fields, we observe an increase of aerl in the t .  B = O  
plane. However, the growth is too small to corroborate the hypothesis according to 
which the critical point acR- 1 is approached in a heavy-ion collision. In fact, the 
strength of the magnetic field produced between the colliding nuclei is of the order 

lo3 MeV', corresponding to a relative correction (aef f -  a ) / a  -0.005 only. Fur- g o "  - 
thermore, as soon as we move away from the t '  B = 0 plane, the leading effect of the 
applied field is to reduce the coupling, since the logarithmic growth is dominated by 
the linear term 

a eB ( t .  B)' 
3 n m 2  B2 ' 
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In this regard, it is easy to understand why such an effect was not reported in [I]. In 
this reference the effective fine structure constant was defined as 

Since gA= 9f47r  we can write 

That is, E is nothing but the value taken by our as,, at t .  B = 0. Thus, its asymptotic 
behaviour is given by 

(41) 

without terms proportional to B in the denominator. 
The foregoing results, in particular equation (38), require minor emendations when 

a weak electric field is superimposed on B. In this case it is useful to split the tensor 
A"'"(E, B )  as follows: 

A " B ' ~ ( E , B ) = A " P ~ ~ ( B ) + A = S ~ ~  (42) 

where AaPy6(B) is given by equation (24) and A"'" accounts for the corrections 
introduced by the external electric field. Correspondingly, the first-order correction to 
the photon propagator is written as 

SD,,(E,B)=GD,,(B)+SW,, (43) 

S W,,(k) = 2D,,( k)A"'" k,k,D,,(k) (44) 

where SD,,(B) is given by equation (25) and 

as dictated by equation (12). Then, according to equation (33), the 'exact' propagator 
W E ,  E )  takes the form 

9(E, B )  = D [  D - SD(B) - 6 W]-'D 9(B)[ 1 + D-'8 WD- '9 (  E ) ]  (45) 

9(B)  being the exact propagator in the absence of background electric fields. From 
this equation we obtain the following relation for a.,(E, B):  

with actf(B) given by equation (38). The correction SW, can be evaluated with the 
aid of equations (19) and (20). Since in this case the tensor Amor' takes a rather messy 
form we just state the final result, omitting the intermediate steps. It tums out that 
a.,(E, E )  can be cast into the form 

The logarithmic growth in the t .  B = 0 plane is then unaffected but, for r .  B # 0, the 
presence of a weak electric field gives a further contribution to the decrease of the 
effective coupling constant. 
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5. Sommary 

In this work we have discussed the photon propagator in the presence of slowly varying 
external fields. Analytical and non-perturbative results have been obtained by including 
the fermionic dynamics in an effective Lagrangian depending on the photon field only. 
From the 9, component of the corrected propagator we have extracted an effective 
fine structure constant a., as a function of the external field configuration. 

The behaviour of a.,, in the presence of strong fields has interesting implications 
for the e+e- peaks observed in heavy-ion scattering experiments at OSI [S, 61. More 
precisely, it is important to ascertain whether the unusual field environment induced 
by the heavy ions can shift a., up to the strong coupling regime aeE-l, where QED 

is supposed to have a new confining phase; as suggested by many authors [3,4], the 
presence of this new phase would actually explain the gross features of the observed 
e+e- narrow structures. In this regard, the main motivation for our work has been to 
reproduce analytically the numerical results of [ 11 which show that the increase of a.,, 
is too small to trigger the postulated phase transition. 

From the formalism developed in sections (2) and (4) we have derived a simple 
expression describing the behaviour of a., in the presence of a strong magnetic field 
B. In the plane perpendicular to B the effective coupling shows a logarithmic growth 

comparable with that produced in a heavy-ion collision, we have estimated a negligible 
shift of the effective coupling constant, namely a.,, - a l a  - 0.005. This small correction 
clearly militates against the new phase hypothesis. 

Sizeable deviations from the expected logarithmic increase have been found for 
directions with a non-vanishing projection on B. In particular, the dominant effect of 
the applied field is to reduce the effective charge, thereby providing further evidence 
against the existence of a strong coupling phase of QED in heavy-ion collisions. Anyway, 
one has to keep in mind that our formalism applied to slowly varying fields only. As 
a consequence, we cannot rigorously rule out the possibility that a phase transition is 
triggered by more realistic configurations of external fields. A lattice calculation [9] 
shows that this is unlikely to occur for the Coulomb case, but the role played by 
time-dependent fields is still an open question. Moreover, further investigations are 
required if the Lagrangian for QED is modified from the beginning via an additional 
fermion-fermion contact interaction, which may be relevant to the strong coupling 
phase of QED. A similar question has been addressed in [lo], suggesting that the new 
interaction term can greatly affect the behaviour of QED in strong background fields. 

which agree: With the nlKEe:'.ca! eva!sa!inx nf [I!. Fnr a f..e!d s:reng!h E - 10' XeP,  
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